Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 838
Filtrar
1.
Sci Rep ; 14(1): 10834, 2024 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-38734821

RESUMEN

Bulk composition of kidney stones, often analyzed with infrared spectroscopy, plays an essential role in determining the course of treatment for kidney stone disease. Though bulk analysis of kidney stones can hint at the general causes of stone formation, it is necessary to understand kidney stone microstructure to further advance potential treatments that rely on in vivo dissolution of stones rather than surgery. The utility of Raman microscopy is demonstrated for the purpose of studying kidney stone microstructure with chemical maps at ≤ 1 µm scales collected for calcium oxalate, calcium phosphate, uric acid, and struvite stones. Observed microstructures are discussed with respect to kidney stone growth and dissolution with emphasis placed on < 5 µm features that would be difficult to identify using alternative techniques including micro computed tomography. These features include thin concentric rings of calcium oxalate monohydrate within uric acid stones and increased frequency of calcium oxalate crystals within regions of elongated crystal growth in a brushite stone. We relate these observations to potential concerns of clinical significance including dissolution of uric acid by raising urine pH and the higher rates of brushite stone recurrence compared to other non-infectious kidney stones.


Asunto(s)
Oxalato de Calcio , Fosfatos de Calcio , Cálculos Renales , Espectrometría Raman , Estruvita , Ácido Úrico , Cálculos Renales/química , Espectrometría Raman/métodos , Oxalato de Calcio/química , Ácido Úrico/análisis , Fosfatos de Calcio/análisis , Fosfatos de Calcio/química , Humanos , Estruvita/química , Compuestos de Magnesio/química , Fosfatos/análisis
2.
Discov Med ; 36(183): 799-815, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38665028

RESUMEN

BACKGROUND: Calcium oxalate monohydrate (COM) forms the most common type of kidney stones observed in clinics, elevated levels of urinary oxalate being the principal risk factor for such an etiology. The objective of the present study was to evaluate the anti-nephrolithiatic effect of herbo-mineral formulation, Lithom. METHODS: The in vitro biochemical synthesis of COM crystals in the presence of Lithom was performed and observations were made by microscopy and Scanning Electron Microscope (SEM) based analysis for the detection of crystal size and morphology. The phytochemical composition of Lithom was evaluated by Ultra-High-Performance Liquid Chromatography (UHPLC). The in vivo model of Ethylene glycol-induced hyperoxaluria in Sprague-Dawley rats was used for the evaluation of Lithom. The animals were randomly allocated to 5 different groups namely Normal control, Disease control (ethylene glycol (EG), 0.75%, 28 days), Allopurinol (50 mg/kg, q.d.), Lithom (43 mg/kg, b.i.d.), and Lithom (129 mg/kg, b.i.d.). Analysis of crystalluria, oxalate, and citrate levels, oxidative stress parameters (malondialdehyde (MDA), catalase, myeloperoxidase (MPO)), and histopathology by hematoxylin and eosin (H&E) and Von Kossa staining was performed for evaluation of Lithom. RESULTS: The presence of Lithom during COM crystals synthesis significantly reduced the average crystal area, feret's diameter, and area-perimeter ratio, in a dose-dependent manner. SEM analysis revealed that COM crystals synthesized in the presence of 100 and 300 µg/mL of Lithom exhibited a veritable morphological transition from irregular polygons with sharp edges to smoothened smaller cuboid polygons. UHPLC analysis of Lithom revealed the presence of Trigonelline, Bergenin, Xanthosine, Adenosine, Bohoervinone B, Vanillic acid, and Ellagic acid as key phytoconstituents. In EG-induced SD rats, the Lithom-treated group showed a decrease in elevated urinary oxalate levels, oxidative stress, and renal inflammation. Von Kossa staining of kidney tissue also exhibited a marked reduction in crystal depositions in Lithom-treated groups. CONCLUSION: Taken together, Lithom could be a potential clinical-therapeutic alternative for management of nephrolithiasis.


Asunto(s)
Oxalato de Calcio , Modelos Animales de Enfermedad , Hiperoxaluria , Nefrolitiasis , Estrés Oxidativo , Ratas Sprague-Dawley , Animales , Oxalato de Calcio/metabolismo , Oxalato de Calcio/química , Hiperoxaluria/inducido químicamente , Hiperoxaluria/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Nefrolitiasis/inducido químicamente , Nefrolitiasis/metabolismo , Nefrolitiasis/patología , Masculino , Cristalización , Glicol de Etileno/toxicidad , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
3.
Food Funct ; 15(8): 4021-4036, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38584465

RESUMEN

Several mechanisms underlying nephrolithiasis, one of the most common urological diseases, involve calcium oxalate formation, including oxidative stress, inflammatory reactions, fibrosis, pyroptosis, and apoptosis. Although lycopene has strong antioxidant activity, its protective effects against CaOx-induced injury have not yet been reported. This study aimed to systematically investigate the protective effects of lycopene and explore its mechanisms and molecular targets. Crystal deposition, renal function, oxidative stress, inflammatory response, fibrosis, pyroptosis, and apoptosis were assessed to evaluate the renoprotective effects of lycopene against crystal formation in a CaOx rat model and oxalate-stimulated NRK-52E and HK-2 cells. Lycopene markedly ameliorated crystal deposition, restored renal function, and suppressed kidney injury by reducing oxidative stress, apoptosis, inflammation, fibrosis, and pyroptosis in the rats. In cell models, lycopene pretreatment reversed reactive oxygen species increase, apoptotic damage, intracellular lactate dehydrogenase release, cytotoxicity, pyroptosis, and extracellular matrix deposition. Network pharmacology and proteomic analyses were performed to identify lycopene target proteins under CaOx-exposed conditions, and the results showed that Trappc4 might be a pivotal target gene for lycopene, as identified by cellular thermal shift assay and surface plasmon resonance analyses. Based on molecular docking, molecular dynamics simulations, alanine scanning mutagenesis, and saturation mutagenesis, we observed that lycopene directly interacts with Trappc4 via hydrophobic bonds, which may be attributed to the PHE4 and PHE142 residues, preventing ERK1/2 or elevating AMPK signaling pathway phosphorylation events. In conclusion, lycopene might ameliorate oxalate-induced renal tubular epithelial cell injury via the Trappc4/ERK1/2/AMPK pathway, indicating its potential for the treatment of nephrolithiasis.


Asunto(s)
Apoptosis , Fibrosis , Licopeno , Nefrolitiasis , Estrés Oxidativo , Piroptosis , Ratas Sprague-Dawley , Solanum lycopersicum , Licopeno/farmacología , Nefrolitiasis/metabolismo , Nefrolitiasis/tratamiento farmacológico , Animales , Estrés Oxidativo/efectos de los fármacos , Ratas , Piroptosis/efectos de los fármacos , Apoptosis/efectos de los fármacos , Masculino , Solanum lycopersicum/química , Humanos , Oxalato de Calcio/metabolismo , Oxalato de Calcio/química , Línea Celular , Riñón/efectos de los fármacos , Riñón/metabolismo , Inflamación/metabolismo , Sustancias Protectoras/farmacología
4.
Ren Fail ; 46(1): 2334396, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38570195

RESUMEN

OBJECTIVES: Calcium oxalate (CaOx) crystal deposition in acute kidney injury (AKI) patients is under recognized but impacts renal outcomes. This study investigates its determinants and effects. METHODS: We studied 814 AKI patients with native kidney biopsies from 2011 to 2020, identifying CaOx crystal deposition severity (mild: <5, moderate: 5-10, severe: >10 crystals per section). We assessed factors like urinary oxalate, citrate, urate, electrolytes, pH, tubular calcification index, and SLC26A6 expression, comparing them with creatinine-matched AKI controls without oxalosis. We analyzed how these factors relate to CaOx severity and their impact on renal recovery (eGFR < 15 mL/min/1.73 m2 at 3-month follow-up). RESULTS: CaOx crystal deposition was found in 3.9% of the AKI cohort (32 cases), with 72% due to nephrotoxic medication-induced tubulointerstitial nephritis. Diuretic use, higher urinary oxalate-to-citrate ratio induced by hypocitraturia, and tubular calcification index were significant contributors to moderate and/or severe CaOx deposition. Poor baseline renal function, low urinary chloride, high uric acid and urea nitrogen, tubular SLC26A6 overexpression, and glomerular sclerosis were also associated with moderate-to-severe CaOx deposition. Kidney recovery was delayed, with 43.8%, 31.2%, and 18.8% of patients having eGFR < 15 mL/min/1.73 m2 at 4, 12, and 24-week post-injury. Poor outcomes were linked to high urinary α1-microglobulin-to-creatinine (α1-MG/C) ratios and active tubular injury scores. Univariate analysis showed a strong link between this ratio and poor renal outcomes, independent of oxalosis severity. CONCLUSIONS: In AKI, CaOx deposition is common despite declining GFR. Factors worsening tubular injury, not just oxalate-to-citrate ratios, are key to understanding impaired renal recovery.


Asunto(s)
Lesión Renal Aguda , Calcinosis , Hiperoxaluria , Humanos , Oxalato de Calcio/química , Creatinina/metabolismo , Riñón/patología , Hiperoxaluria/complicaciones , Oxalatos/metabolismo , Lesión Renal Aguda/patología , Citratos/metabolismo , Ácido Cítrico
6.
Urolithiasis ; 52(1): 40, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427040

RESUMEN

This retrospective study aims to examine the correlation between calcium oxalate (CaOx) stones and common clinical tests, as well as urine ionic composition. Additionally, we aim to develop and implement a personalized model to assess the accuracy and feasibility of using charts to predict calcium oxalate stones in patients with urinary tract stones. A retrospective analysis was conducted on data from 960 patients who underwent surgery for urinary stones at the First Affiliated Hospital of Soochow University from January 1, 2010, to December 31, 2022. Among these patients, 447 were selected for further analysis based on screening criteria. Multivariate logistic regression analysis was then performed to identify the best predictive features for calcium oxalate stones from the clinical data of the selected patients. A prediction model was developed using these features and presented in the form of a nomogram graph. The performance of the prediction model was assessed using the C-index, calibration curve, and decision curve, which evaluated its discriminative power, calibration, and clinical utility, respectively. The nomogram diagram prediction model developed in this study is effective in predicting calcium oxalate stones which is helpful in screening and early identification of high-risk patients with calcium oxalate urinary tract stones, and may be a guide for urologists in making clinical treatment decisions.


Asunto(s)
Líquidos Corporales , Cálculos Urinarios , Humanos , Oxalato de Calcio/química , Estudios Retrospectivos , Nomogramas , Cálculos Urinarios/diagnóstico , Calcio/orina
7.
Int J Biol Macromol ; 261(Pt 2): 129912, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309384

RESUMEN

Stone modulators are various kinds of molecules that play crucial roles in promoting/inhibiting kidney stone formation. Several recent studies have extensively characterized the stone modulatory proteins with the ultimate goal of preventing kidney stone formation. Herein, we introduce the StoneMod 2.0 database (https://www.stonemod.org), which has been dramatically improved from the previous version by expanding the number of the modulatory proteins in the list (from 32 in the initial version to 17,130 in this updated version). The stone modulatory proteins were recruited from solid experimental evidence (via PubMed) and/or predicted evidence (via UniProtKB, QuickGO, ProRule, STITCH and OxaBIND to retrieve calcium-binding and oxalate-binding proteins). Additionally, StoneMod 2.0 has implemented a scoring system that can be used to determine the likelihood and to classify the potential stone modulatory proteins as either "solid" (modulator score ≥ 50) or "weak" (modulator score < 50) modulators. Furthermore, the updated version has been designed with more user-friendly interfaces and advanced visualization tools. In addition to the monthly scheduled update, the users can directly submit their experimental evidence online anytime. Therefore, StoneMod 2.0 is a powerful database with prediction scores that will be very useful for many future studies on the stone modulatory proteins.


Asunto(s)
Oxalato de Calcio , Cálculos Renales , Humanos , Oxalato de Calcio/química , Cálculos Renales/química , Proteínas/metabolismo , Proteínas Portadoras/metabolismo , Oxalatos/metabolismo , Riñón/metabolismo
8.
J Mater Chem B ; 12(9): 2274-2281, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38345146

RESUMEN

The retention of calcium oxalate monohydrate (COM) crystals on cell membranes is pivotal in kidney stone formation. However, the mechanisms underlying COM attachment to neutral lipid membranes remain unclear. In this study, we demonstrate that COM exhibits size-selective adhesion to fluid lipid membranes composed of lipids with distinct sizes. Specifically, the (100) facet of COM induces the formation of new domains and establishes strong adhesion in the 18:1 (Δ9-Cis) PC (DOPC) membrane, while the (010) facet induces domains with strong adhesion in the 16:0-14:0 PC membrane. This selectivity is linked to the compatibility of the area per lipid in DOPC with the unit cell area of the (100) facet and the area per lipid in 16:0-14:0 PC with the (010) facet. Our Raman spectroscopic analyses reveal that the lipid acyl chains within these induced domains exhibit a higher degree of ordering compared to the typical fluid state of the membrane. This ordered structural alignment, combined with the lateral size-matching effect, suggests the potential formation of molecular arrays within the lipid bilayer that are in harmony with the lattice dimension of COM. To elucidate the strong adhesion between calcium oxalate and the phospholipid head group in the absence of a direct molecular structural correspondence, we propose that crystal water associated with COM can form hydrogen bonds with the phospholipid head group. Using structure visualization software, we demonstrate the feasibility of such hydrogen bonding networks. The formation of this network could serve to stabilize and enhance the attachment of COM to the lipid membrane. This mediation by water molecules offers a plausible explanation for the pronounced affinity at the interface.


Asunto(s)
Oxalato de Calcio , Cálculos Renales , Humanos , Oxalato de Calcio/química , Membrana Dobles de Lípidos , Fosfolípidos , Agua
9.
Cell Mol Life Sci ; 81(1): 85, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38345762

RESUMEN

The pathogenesis of renal calcium-oxalate (CaOx) stones is complex and influenced by various metabolic factors. In parallel, palmitic acid (PA) has been identified as an upregulated lipid metabolite in the urine and serum of patients with renal CaOx stones via untargeted metabolomics. Thus, this study aimed to mechanistically assess whether PA is involved in stone formation. Lipidomics analysis of PA-treated renal tubular epithelial cells compared with the control samples revealed that α-linoleic acid and α-linolenic acid were desaturated and elongated, resulting in the formation of downstream polyunsaturated fatty acids (PUFAs). In correlation, the levels of fatty acid desaturase 1 and 2 (FADS1 and FADS2) and peroxisome proliferator-activated receptor α (PPARα) in these cells treated with PA were increased relative to the control levels, suggesting that PA-induced upregulation of PPARα, which in turn upregulated these two enzymes, forming the observed PUFAs. Lipid peroxidation occurred in these downstream PUFAs under oxidative stress and Fenton Reaction. Furthermore, transcriptomics analysis revealed significant changes in the expression levels of ferroptosis-related genes in PA-treated renal tubular epithelial cells, induced by PUFA peroxides. In addition, phosphatidyl ethanolamine binding protein 1 (PEBP1) formed a complex with 15-lipoxygenase (15-LO) to exacerbate PUFA peroxidation under protein kinase C ζ (PKC ζ) phosphorylation, and PKC ζ was activated by phosphatidic acid derived from PA. In conclusion, this study found that the formation of renal CaOx stones is promoted by ferroptosis of renal tubular epithelial cells resulting from PA-induced dysregulation of PUFA and phosphatidic acid metabolism, and PA can promote the renal adhesion and deposition of CaOx crystals by injuring renal tubular epithelial cells, consequently upregulating adhesion molecules. Accordingly, this study provides a new theoretical basis for understanding the correlation between fatty acid metabolism and the formation of renal CaOx stones, offering potential targets for clinical applications.


Asunto(s)
Calcio , Ferroptosis , Humanos , Oxalato de Calcio/química , PPAR alfa , Ácidos Grasos Insaturados , Ácidos Palmíticos
10.
J Exp Bot ; 75(8): 2470-2480, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38243384

RESUMEN

Needle-like calcium oxalate crystals called raphides are unique structures in the plant kingdom. Multiple biomacromolecules work together in the regulatory and transportation pathways to form raphides; however, the mechanism by which this occurs remains unknown. Using banana (Musa spp.), this study combined in vivo methods including confocal microscopy, transmission electron microscopy, and Q Exactive mass spectrometry to identify the main biomolecules, such as vesicles, together with the compositions of lipids and proteins in the crystal chamber, which is the membrane compartment that surrounds each raphide during its formation. Simulations of the vesicle transportation process and the synthesis of elongated calcium oxalate crystals in vitro were then conducted, and the results suggested that the vesicles carrying amorphous calcium oxalate and proteins embedded in raphides are transported along actin filaments. These vesicles subsequently fuse with the crystal chamber, utilizing the proteins embedded in the raphides as a template for the final formation of the structure. Our findings contribute to the fundamental understanding of the regulation of the diverse biomacromolecules that are crucial for raphide formation. Moreover, the implications of these findings extend to other fields such as materials science, and particularly the synthesis of functionalized materials.


Asunto(s)
Oxalato de Calcio , Musa , Oxalato de Calcio/análisis , Oxalato de Calcio/química , Oxalato de Calcio/metabolismo , Musa/metabolismo , Microscopía Electrónica de Transmisión , Espectrometría de Masas , Transporte Biológico
11.
Tissue Barriers ; 12(1): 2210051, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37162265

RESUMEN

Defects of tight junction (TJ) are involved in many diseases related to epithelial cell functions, including kidney stone disease (KSD), which is a common disease affecting humans for over a thousand years. This review provides brief overviews of KSD and TJ, and summarizes the knowledge on crystal-induced defects of TJ in renal tubular epithelial cells (RTECs) in KSD. Calcium oxalate (CaOx) crystals, particularly COM, disrupt TJ via p38 MAPK and ROS/Akt/p38 MAPK signaling pathways, filamentous actin (F-actin) reorganization and α-tubulin relocalization. Stabilizing p38 MAPK signaling, reactive oxygen species (ROS) production, F-actin and α-tubulin by using SB239063, N-acetyl-L-cysteine (NAC), phalloidin and docetaxel, respectively, successfully prevent the COM-induced TJ disruption and malfunction. Additionally, genetic disorders of renal TJ, including mutations and single nucleotide polymorphisms (SNPs) of CLDN2, CLDN10b, CLDN14, CLDN16 and CLDN19, also affect KSD. Finally, the role of TJ as a potential target for KSD therapeutics and prevention is also discussed.


Asunto(s)
Cálculos Renales , Uniones Estrechas , Humanos , Uniones Estrechas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Actinas/metabolismo , Tubulina (Proteína)/metabolismo , Cálculos Renales/etiología , Cálculos Renales/química , Cálculos Renales/metabolismo , Oxalato de Calcio/química , Oxalato de Calcio/metabolismo , Oxalato de Calcio/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
12.
Int J Surg Pathol ; 32(3): 601-606, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37424352

RESUMEN

Oxalosis refers to the accumulation of calcium oxalate crystals in various organs and tissues, most commonly due to Aspergillus infection involving the lung or sinonasal tract. Both invasive and noninvasive forms of fungal rhinosinusitis can be associated with calcium oxalate crystal deposition. Here, we report a unique case of sinonasal oxalosis presenting as a destructive lesion in the absence of invasive fungal disease. Due to the clinical and pathologic significance of calcium oxalate crystals as seen in this patient, specimens from the sinonasal tract should be evaluated for the presence of these crystals, which may be a surrogate marker for fungal infection and may also independently cause tissue destruction.


Asunto(s)
Hiperoxaluria , Enfermedades Pulmonares Fúngicas , Rinosinusitis , Humanos , Aspergillus niger , Oxalato de Calcio/química , Enfermedades Pulmonares Fúngicas/complicaciones , Enfermedades Pulmonares Fúngicas/microbiología , Enfermedades Pulmonares Fúngicas/patología , Cristalización , Hiperoxaluria/complicaciones
13.
Molecules ; 28(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38138466

RESUMEN

The polysaccharides extracted from Aspidopterys obcordata are thought to have anti-urolithiasis activity in Drosophila kidney stones. This study aimed to assess the effects of different extraction solvents on the yield, chemical composition, and bioactivity of polysaccharides from A. obcordata. A. obcordata polysaccharides were extracted by using four solutions: hot water, HCl solution, NaOH solution, and 0.1 M NaCl. The results revealed that the extraction solvents significantly influenced the extraction yields, molecular weight distribution, monosaccharide compositions, preliminary structural characteristics, and microstructures of polysaccharides. The NaOH solution's extraction yield was significantly higher than the other extraction methods. Vitro antioxidant activity assays revealed that the NaOH solution extracted exhibited superior scavenging abilities towards DPPH and ABTS radicals and higher FRAP values than other polysaccharides. The vitro assays conducted for calcium oxalate crystallization demonstrated that four polysaccharides exhibited inhibitory effects on the nucleation and aggregation of calcium oxalate crystals, impeded calcium oxalate monohydrate growth, and induced calcium oxalate dihydrate formation. The NaOH solution extracted exhibited the most pronounced inhibition of calcium oxalate crystal nucleation, while the hot water extracted demonstrated the most significant suppression of calcium oxalate crystal aggregation. Therefore, it can be inferred that polysaccharides extracted with NaOH solution exhibited significant potential as a viable approach for extracting polysaccharides from stems due to their superior yield and the remarkable bioactivity of the resulting products.


Asunto(s)
Oxalato de Calcio , Polisacáridos , Oxalato de Calcio/química , Solventes , Hidróxido de Sodio , Polisacáridos/farmacología , Polisacáridos/química , Agua
14.
Food Chem Toxicol ; 178: 113925, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37414240

RESUMEN

This study investigates the mechanism by which butyric acid can protect against calcium oxalate (CaOx) nephrolithiasis. To do so, a rat model was used with 0.75% ethylene glycol administration to induce CaOx crystal formation. Histological and von Kossa staining revealed calcium deposits and renal injury, while dihydroethidium fluorescence staining was used to detect reactive oxygen species (ROS) levels. Flow cytometry and TUNEL assays were used to assess apoptosis, respectively. Treatment with sodium butyrate (NaB) was found to partially reverse the oxidative stress, inflammation, and apoptosis associated with CaOx crystallization in the kidney. In addition, in HK-2 cells, NaB reversed the decreased cell viability, increased ROS levels and apoptosis damage caused by oxalate exposure. Network pharmacology was employed to predict the target genes of butyric acid, CYP2C9. Subsequently, NaB was found to significantly reduce CYP2C9 levels in vivo and in vitro, and inhibition of CYP2C9 by Sulfaphenazole (a specific CYP2C9 inhibitor), was able to reduce ROS levels, inflammation injury, and apoptosis in oxalate-induced HK-2 cells. Collectively, these findings suggest that butyric acid may inhibit oxidative stress and reduce inflammation injury in CaOx nephrolithiasis by suppressing CYP2C9.


Asunto(s)
Oxalato de Calcio , Nefrolitiasis , Ratas , Animales , Oxalato de Calcio/química , Oxalato de Calcio/metabolismo , Ácido Butírico/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Nefrolitiasis/inducido químicamente , Nefrolitiasis/tratamiento farmacológico , Nefrolitiasis/prevención & control , Riñón/metabolismo , Estrés Oxidativo
15.
Biomolecules ; 13(7)2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37509080

RESUMEN

OBJECTIVE: This study explored the effects of polysaccharides (RAPD) extracted from the traditional anti-stone Chinese medicine Rhizoma alismatis and their carboxymethylated derivatives (RAPs) on the crystal phase, morphology, and size of calcium oxalate (CaOx). It also determined the damaging ability of the regulated crystals on human renal tubular epithelial cells (HK-2). METHODS: RAPD carboxymethylation with a carboxyl group (-COOH) content of 3.57% was carried out by the chloroacetic acid solvent method. The effects of -COOH content in RAPs and RAP concentration on the regulation of CaOx crystal growth were studied by controlling the variables. Cell experiments were conducted to explore the differences in the cytotoxicity of RAP-regulated crystals. RESULTS: The -COOH contents of RAPD, RAP1, RAP2, and RAP3 were 3.57%, 7.79%, 10.84%, and 15.33%, respectively. RAPs can inhibit the growth of calcium oxalate monohydrate (COM) and induce the formation of calcium oxalate dihydrate (COD). When the -COOH content in RAPs was high, their ability to induce COD formation was enhanced. In the crystals induced by RAPs, a high COD content can lower the damage to cells. In particular, the cytotoxicity of the crystals induced by RAP3 was the lowest. When the concentration of RAP3 increased, the cytotoxicity gradually increased due to the reduced size of the formed COD crystals. An interaction was observed between RAPs and crystals, and the number of RAPs adsorbed in the crystals was positively correlated with the -COOH content in RAPs. CONCLUSIONS: RAPs can reduce the damage of CaOx to HK-2 cells by regulating the crystallization of CaOx crystals and effectively reducing the risk of kidney stone formation. RAPs, especially RAP3 with a high carboxyl group content, has the potential to be developed as a novel green anti-stone drug.


Asunto(s)
Oxalato de Calcio , Células Epiteliales , Humanos , Oxalato de Calcio/química , Oxalato de Calcio/farmacología , Técnica del ADN Polimorfo Amplificado Aleatorio
16.
Plant Cell Physiol ; 64(10): 1124-1138, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37498947

RESUMEN

From simple algal forms to the most advanced angiosperms, calcium oxalate (CaOx) crystals (CRs) occur in the majority of taxonomic groups of photosynthetic organisms. Various studies have demonstrated that this biomineralization is not a simple or random event but a genetically regulated coordination between calcium uptake, oxalate (OX) synthesis and, sometimes, environmental stresses. Certainly, the occurrence of CaOx CRs is old; however, questions related to their genesis, biosynthesis, significance and genetics exhibit robust evolution. Moreover, their speculated roles in bulk calcium regulation, heavy metal/OX detoxification, light reflectance and photosynthesis, and protection against grazing and herbivory, besides other characteristics, are gaining much interest. Thus, it is imperative to understand their synthesis and regulation in relation to the ascribed key functions to reconstruct future perspectives in harnessing their potential to achieve nutritious and pest-resistant crops amid anticipated global climatic perturbations. This review critically addresses the basic and evolving concepts of the origin (and recycling), synthesis, significance, regulation and fate vis-à-vis various functional aspects of CaOx CRs in plants (and soil). Overall, insights and conceptual future directions present them as potential biominerals to address future climate-driven issues.


Asunto(s)
Oxalato de Calcio , Calcio , Oxalato de Calcio/química , Calcio/metabolismo , Fotosíntesis/fisiología , Transporte Biológico , Plantas/metabolismo
17.
Chem Biol Interact ; 382: 110636, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37454925

RESUMEN

Calcium oxalate (CaOx) stones are the most prevalent type of kidney stones. CaOx crystals can stimulate reactive oxygen species (ROS) generation and induce renal oxidative stress to promote stone formation. Intracellular Ca2+ is an important signaling molecule, and an elevation of cytoplasmic Ca2+ levels could trigger oxidative stress. Our previous study has revealed that upregulation of Ang II/AT1R promoted renal oxidative stress during CaOx exposure. IP3/IP3R/Ca2+ signaling pathway activated via Ang II/AT1R is involved in several diseases, but its role in stone formation has not been reported. Herein, we focus on the role of AT1R/IP3/IP3R-mediated Ca2+ release in CaOx crystals-induced oxidative stress and explore whether inhibition of this pathway could alleviate renal oxidative stress. NRK-52E cells were exposed to CaOx crystals pretreated with AT1R inhibitor losartan or IP3R inhibitor 2-APB, and glyoxylic acid monohydrate-induced CaOx stone-forming rats were treated with losartan or 2-APB. The intracellular Ca2+ levels, ROS levels, oxidative stress indexes, and the gene expression of this pathway were detected. Our results showed that CaOx crystals activated AT1R to promote IP3/IP3R-mediated Ca2+ release, leading to increased cytoplasmic Ca2+ levels. The Ca2+ elevation was able to stimulate NOX2 and NOX4 to generate ROS, induce oxidative stress, and upregulate the expression of stone-related proteins. 2-APB and losartan reversed the referred effects, reduced CaOx crystals deposition and alleviated tissue injury in the rat kidneys. In summary, our results indicated that CaOx crystals promoted renal oxidative stress by activating the AT1R/IP3/IP3R/Ca2+ pathway. Inhibition of AT1R/IP3/IP3R-mediated Ca2+ release protected against CaOx crystals-induced renal oxidative stress. 2-APB and losartan might be promising preventive and therapeutic agents for the treatment of kidney stone disease.


Asunto(s)
Oxalato de Calcio , Cálculos Renales , Ratas , Animales , Oxalato de Calcio/química , Especies Reactivas de Oxígeno/metabolismo , Losartán/metabolismo , Riñón/metabolismo , Cálculos Renales/inducido químicamente , Cálculos Renales/prevención & control , Estrés Oxidativo
18.
Int Immunopharmacol ; 121: 110398, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37301123

RESUMEN

Sirtuin 1 (SIRT1) protein is involved in macrophage differentiation, while NOTCH signaling affects inflammation and macrophage polarization. Inflammation and macrophage infiltration are typical processes that accompany kidney stone formation. However, the role and mechanism of SIRT1 in renal tubular epithelial cell injury caused by calcium oxalate (CaOx) deposition and the relationship between SIRT1 and the NOTCH signaling pathway in this urological disorder are unclear. This study investigated whether SIRT1 promotes macrophage polarization to inhibit CaOx crystal deposition and reduce renal tubular epithelial cell injury. Public single-cell sequencing data, RT-qPCR, immunostaining approaches, and Western blotting showed decreased SIRT1 expression in macrophages treated with CaOx or exposed to kidney stones. Macrophages overexpressing SIRT1 differentiated towards the anti-inflammatory M2 phenotype, significantly inhibiting apoptosis and alleviating injury in the kidneys of mice with hyperoxaluria. Conversely, decreased SIRT1 expression in CaOx-treated macrophages triggered Notch signaling pathway activation, promoting macrophage polarization towards the pro-inflammatory M1 phenotype. Our results suggest that SIRT1 promotes macrophage polarization towards the M2 phenotype by repressing the NOTCH signaling pathway, which reduces CaOx crystal deposition, apoptosis, and damage in the kidney. Therefore, we propose SIRT1 as a potential target for preventing disease progression in patients with kidney stones.


Asunto(s)
Oxalato de Calcio , Cálculos Renales , Animales , Ratones , Oxalato de Calcio/química , Inflamación/metabolismo , Riñón/metabolismo , Cálculos Renales/química , Cálculos Renales/metabolismo , Macrófagos/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo
19.
Microsc Res Tech ; 86(7): 862-881, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37248646

RESUMEN

This study provides a comprehensive account of the various types of calcium oxalate crystals found in the genus Baccharis and assesses the exceptional value of crystal macropatterns for the taxonomy of the genus. The morphotype, occurrence, and chemical composition of the crystals found in the stems and leaves are studied. The 44 species included in this study were selected based on a broad phylogeny-based sampling covering seven subgenera and 31 sections. These species were chosen to represent all the main phylogenetic lineages of Baccharis; thus, the sampling also represents a comprehensive coverage concerning evolutionary significance for such a large and environmentally and economically important plant group. The samples were analyzed by light microscopy, scanning electron microscopy (SEM), and energy-dispersive x-ray spectroscopy (EDS). Several morphotypes of crystals, including druses, crystal sand, styloids and prisms, were present. Based on their chemical composition, the crystals were classified as pure calcium oxalate, mixtures of oxalates and sulfates, and mixtures of oxalates, sulfates, and silica. The crystal macropatterns observed in this study aid in species identification and provide novel data for the taxonomy of Baccharis. RESEARCH HIGHLIGHTS: Most species of Baccharis have a specific crystalline pattern. Each species produces a crystal morphotype or a set of morphotypes specific to it. The crystals observed are formed by calcium oxalate.


Asunto(s)
Baccharis , Oxalato de Calcio , Oxalato de Calcio/química , Filogenia , Microscopía Electrónica de Rastreo , Oxalatos , Sulfatos
20.
Eur J Med Res ; 28(1): 150, 2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37031165

RESUMEN

BACKGROUND: Kidney stone disease (KSD) is commonly accompanied with renal fibrosis, characterized by accumulation and reorganization of extracellular matrix (ECM). During fibrogenesis, resident renal fibroblasts are activated to become myofibroblasts that actively produce ECM. However, such fibroblast-myofibroblast differentiation in KSD remained unclear. Our present study thus examined effects of secreted products (secretome) derived from proximal (HK-2) vs. distal (MDCK) renal tubular cells exposed to calcium oxalate monohydrate (COM) crystals on activation of renal fibroblasts (BHK-21). METHODS: HK-2 and MDCK cells were treated with 100 µg/ml COM crystals under serum-free condition for 16 h. In parallel, the cells maintained in serum-free medium without COM treatment served as the control. Secretome derived from culture supernatant of each sample was mixed (1:1) with fresh serum-free medium and then used for BHK-21 culture for another 24 h. RESULTS: Analyses revealed that COM-treated-HK-2 secretome significantly induced proliferation, caused morphological changes, increased spindle index, and upregulated fibroblast-activation markers (F-actin, α-SMA and fibronectin) in BHK-21 cells. However, COM-treated-MDCK secretome had no significant effects on these BHK-21 parameters. Moreover, level of transforming growth factor-ß1 (TGF-ß1), a profibrotic factor, significantly increased in the COM-treated-HK-2 secretome but not in the COM-treated-MDCK secretome. CONCLUSIONS: These data indicate, for the first time, that proximal and distal tubular epithelial cells exposed to COM crystals send different messages to resident renal fibroblasts. Only the secretome derived from proximal tubular cells, not that from the distal cells, induces renal fibroblast activation after their exposure to COM crystals. Such differential effects are partly due to TGF-ß1 secretion, which is induced by COM crystals only in proximal tubular cells.


Asunto(s)
Oxalato de Calcio , Cálculos Renales , Animales , Perros , Humanos , Oxalato de Calcio/química , Factor de Crecimiento Transformador beta1 , Secretoma , Células Epiteliales , Células de Riñón Canino Madin Darby , Fibroblastos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA